
Combinatorics, 2015 Fall, USTC
Week 3

An easy application of the method of generating functions

• Recall: Given subsets I1, I2, ..., Ik of non-negative integers, let fj(x) :=
∑

l∈Ij x
l for all

1 ≤ j ≤ k, and let f(x) :=
∏k

j=1 fj(x). Then the number an of integer solutions to
i1 + i2 + ...+ ik = n, where ij ∈ Ij , is equal to [xn]f . In other words, f(x) is the generating
function of {an}.

• The following problem is a warm-up of the method of generating functions.

• Let an be the number of ways to pay n Chinese Yuan using 1-Yuan bills, 2-Yuan bills and
5-Yuan bills (assume there exist such bills). What is the generating function of this sequence
{an}?

• Observe that an corresponds to the number of integer solutions (i1, i2, i3) to

i1+i2+i3 = n, where i1 ∈ I1 := {0, 1, 2, ...}, i2 ∈ I2 := {0, 2, 4, ...} and i3 ∈ I3 := {0, 5, 10, ...}.

Let fj(x) :=
∑

m∈Ij x
m for j = 1, 2, 3. Then f(x) :=

∏
1≤j≤3 fj(x) is such that [xn]f = an.

That is, the generating function of {an} is f(x) = 1
1−x ·

1
1−x2 · 1

1−x5 .

Integer partition

• How many ways are there to write a natural number n as a sum of several natural numbers?

• The answer is not too difficult if we count ordered partitions of n. Here “ordered partition”
means that we will view 1 + 1 + 2, 1 + 2 + 1 as two different partitions of 4.

For 1 ≤ k ≤ n, let ak be the number of ordered partitions of n such that n is partitioned
into k natural numbers. Then this counts the number of integer solutions to

i1 + i2 + ... + ik = n, where each ij ≥ 1.

So ak =
(
n−1
k−1
)
.

Therefore the total number of ordered partitions of n is
∑

1≤k≤n
(
n−1
k−1
)

= 2n−1.

• From now on, we consider the unordered partitions. For instance, we will view 1 + 2 + 3 and
3 + 2 + 1 as the same one.

Let pn be the number of partitions of n in this sense.

• Let nj be the number of the j’s in such a partition of n. Then it holds that∑
j≥1

j · nj = n.

If we use ij to express the contribution of the addends equal to j in a partition of n (i.e.,
ij = j · nj), then ∑

j≥1
ij = n, where ij ∈ {0, j, 2j, 3j, ...}.
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Note that in the above summation, j can run from 1 to infinity, or run from 1 to n.

So pn is the coefficient of xn in the product

Pn(x) := (1 + x + x2 + ...)(1 + x2 + x4 + ...)...(1 + xn + x2n + ...) =
n∏

k=1

1

1− xk
.

• What is the generating function P (x) of {pn} then?

As the index j in the summation can be viewed from 1 to +∞, the generating function
P (x) is an infinite product of polynomials

P (x) =

+∞∏
k=1

1

1− xk
.

The Catalan number

• First let us recall the definition of
(
r
k

)
for real number r and positive integer k, and the

Newton’s binomial Theorem. We obtained that(1
2

k

)
=

(−1)k−12

4k
· (2k − 2)!

k!(k − 1)!
.

• Let n-gon be a polygon with n corners, labelled as corner 1, corner 2,..., corner n.

• Definition. A triangulation of the n-gon is a way to add lines between corners to make
triangles such that these lines do not cross inside of the polygon.

• Let bn−1 be the number of triangulations of the n-gon, for n ≥ 3. It is not hard to see that
b2 = 1, b3 = 2, b4 = 5.

• We want to find the general formula of bn.

• We consider the triangle T in a triangulation of n-gon which contains corners 1 and 2. The
triangle T should contain a third corner, say i. Since 3 ≤ i ≤ n, we can divide the set of
triangulations of n-gon into cases.

(1). If i = 3 or n, the triangle T divides the n-gon into triangle T itself plus a (n− 1)-gon,
which results in bn−2 triangulations of n-gon.

(2). For 4 ≤ i ≤ n−1, the triangle T divides the n-gon into three regions: a (n− i+2)-gon,
triangle T and a (i − 1)-gon, therefore it results in bi−2 × bn−i+1 many triangulations of
n-gon. Therefore, combining (1) and (2), we get that

bn−1 = bn−2 +

n−1∑
i=4

bi−2bn−i+1 + bn−2 = bn−2 +

n−3∑
j=2

bjbn−j−1 + bn−2

By letting b0 = 0 and b1 = 1, we get

bn−1 =
n−1∑
j=0

bjbn−1−j or bk =
k∑

j=0

bjbk−j for k ≥ 2.
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• Let f(x) =
∑

k≥0 bkx
k. Note that f2(x) =

∑
k≥0

(∑k
j=0 bjbk−j

)
xk. Therefore

f(x) = x +
∑
k≥2

bkx
k = x +

∑
k≥2

 k∑
j=0

bjbk−j

xk = x +
∑
k≥0

 k∑
j=0

bjbk−j

xk = x + f2(x).

• Solving f2(x) − f(x) + x = 0, we get that f(x) = 1+
√
1−4x
2 or 1−

√
1−4x
2 . But notice that

f(0) = 0, so it has to be the case that

f(x) =
1−
√

1− 4x

2
.

• Next, we apply the Newton’s binomial theorem to get that

f(x) =
1

2
− 1

2

∑
k≥0

(1
2

k

)
(−4x)k =

∑
k≥1

(−1)k+14k

2

(1
2

k

)
xk.

After plugging the obtained expression of
( 1

2
k

)
= (−1)k−12

4k
· (2k−2)!
k!(k−1)! , we get that

f(x) =
∑
k≥1

(2k − 2)!

k!(k − 1)!
xk =

∑
k≥1

1

k

(
2k − 2

k − 1

)
xk.

Note that f(x) is the generating function of {bk}, therefore

bk =
1

k

(
2k − 2

k − 1

)
.

• Theorem. The total number of triangulations of the (k + 2)-gon is 1
k+1

(
2k
k

)
, which is also

called the kth Catalan number.

• Definition. A binary tree is a tree which can be recursively defined as follows (we will
show more properties about trees when we talk about Graph Theory):

A binary tree either is empty (having no vertex), or consists of one distinguished vertex
(called the root), and an ordered pair of binary trees (called the left subtree and right
subtree).

• Exercise. Show that the number of binary trees with n vertices is equal to the nth Catalan
number.

Random walk

• Imagine the real axis drawn in the plane with integer points marked. A frog leaps among
integer points according to the following rules of random walk:

(1). Initially, the frog sits at 1.

(2). In each coming step, the frog leaps either by distance 2 to the right (from i to i+ 2), or
by distance 1 to the left (from i to i− 1). It decides one of the two actions independently
at random, and each action is of the same probability 1

2 .
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• Problem. What is the probability that the frog returns to 0?

• In each step, we use “+” and “-” to express the situation that the frog leaps to the right
and the left, respectively. Then the probability space Ω can be viewed as the set of infinite
vectors, where each coordinate is either + or -.

• Let A be the event that the frog starts at 1 and returns to 0. For i ≥ 1, let Ai be the event
that the frog starts at 1 and reaches 0 at the ith step for the first time.

Therefore, A = ∪+∞i=1Ai is a union of disjoint events. Thus, the probability that the frog
returns to 0 is P (A) =

∑+∞
i=1 P (Ai).

• To computer the value of P (Ai) for i ≥ 1, we define ai to be the number of trajectories of
the first i steps such that the frog starts at 1 and reaches 0 at the ith step for the first time.

Note that in the first i steps, there are 2i trajectories in total (in each step, there are two
choices, going left or right); moreover each trajectory occurs with the same probability.
Therefore,

P (Ai) =
ai
2i
.

Let f(x) =
∑+∞

i=0 aix
i be the generating function of {ai}, where a0 := 0. Then,

P (A) =
+∞∑
i=1

P (Ai) =
+∞∑
i=1

ai
2i

= f

(
1

2

)
.

• We now turn to study the generating function f(x).

Let bi to be the number of trajectories of the first i steps such that the frog starts at 2 and
reaches 0 at the ith step for the first time.

Let ci to be the number of trajectories of the first i steps such that the frog starts at 3 and
reaches 0 at the ith step for the first time.

We want to express bi in terms of {aj}. Since the frog only can leap to left by distance 1, if
the frog starts at 2 and successfully reaches 0 at the ith step for the first time, then it needs
to reach 1 first. Let j be the number of the steps by which the frog reaches 1 for the first
time. Then there are aj trajectories that the frog starts at 2 and reaches 1 at the jth step
for the first time. After these j leaps, i− j leaps remain for the frog to move from 1 to 0,
and by definition there are ai−j such trajectories that the frog can finish in exactly i − j
steps. Observe that j can range from 1 to i− 1. We derive that

bi =

i−1∑
j=1

ajai−j =

i∑
j=0

ajai−j ,

where a0 = 0. This implies that
∑

i≥0 bix
i = (

∑
i≥0 aix

i)2 = f2(x).

Similarly, if we count the number ci of trajectories from 3 to 0, we can obtain that

ci =

i−1∑
j=1

ajbi−j =

i∑
j=0

ajbi−j ,
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where the second equality is because a0 = b0 = 0. Therefore,

∑
i≥0

cix
i =

∑
i≥0

bix
i

∑
i≥0

aix
i

 = f3(x).

• Let us investigate the number ai of trajectories from 1 to 0 from a different point of view.
After the first step, either the frog reaches 0 directly (which shows that a1 = 1), or it leaps
to the number 3. In the latter case, it needs to reach 0 in the remaining i − 1 steps, so it
has ci−1 trajectories of starting 3 and reaching 0. This shows that for i ≥ 2, ai = ci−1.

Now we see that (c0 = 0)

f(x) =
∑
i≥0

aix
i = x +

∑
i≥2

aix
i = x +

∑
i≥2

ci−1x
i = x + x · f3(x).

• Let a := P (A), which is also f(1/2). So a = 1
2 + a3

2 , i.e., (a− 1)(a2 + a− 1) = 0.

Solving this, we get that a = 1,
√
5−1
2 or −

√
5−1
1 . But P (A) ≥ 0, so P (A) = 1 or

√
5−1
2 .

To determine the value of P (A), we consider the inverse function of f(x), that is, g(x) :=
x

1+x3 . Consider the figure of g(x). We find that g(x) is increasing in the interval around
√
5−1
2 but decreasing around 1. Since f(x) =

∑
aix

i is increasing as x grows, its inverse
function g(x) should also be increasing in the region we consider here.

This explains that the probability P (A) should be
√
5−1
2 , which is the golden ratio.

Exponential generating function

Let N,Ne and No be the sets of nonnegative integers, nonnegative even integers and nonneg-
ative odd integers, respectively.

• The ordinary generating function of the sequence {an}n≥0 is the power series f(x) =∑
n≥0 anx

n. We recall the following fact of ordinary generating functions (again!).

Fact. Let fj(x) :=
∑

i∈Ij x
i for j = 1, 2, ..., n. And let ak be the number of integer solutions

to i1 + i2 + ... + in = k, where ij ∈ Ij , that is

ak :=
∑

i1+i2+...+in=k for ij∈Ij

1.

Then
∏n

j=1 fj(x) is the ordinary generating function of {ak}.

• Problem 1. Let Sn be the number of selections of n letters chosen from an unlimited supply
of a’s, b’s and c’s such that both of the numbers of a’s and b’s are even. We can write Sn as

Sn =
∑

e1+e2+e3=n, e1,e2∈Ne, e3∈N
1.

Using the previous fact, we see that Sn = [xn]f , where

f(x) =

(∑
i∈Ne

xi

)2
∑

j∈N
xj

 =

(
1

1− x2

)2

· 1

1− x
.
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• We consider a more complicate problem.

Problem 2. Let Tn be the number of arrangements (or words) of n letters chosen from an
unlimited supply of a’s, b’s and c’s such that both of the numbers of a’s and b’s are even.
What is the value of Tn?

• We need the following fact.

Fact: If we have n letters including x a’s, y b’s and z c’s (i.e. x + y + z = n), then we can
form n!

x!y!z! distinct words using these n letters.

• Notice that the arrangements of length n can be classified into many cases, desponding on
the selection of the n letters, i.e., the numbers of a’s, b’s and c’s used. And each selection of
n letters, say x a’s, y b’s and z c’s, should contribute n!

x!y!z! to the count of the total number
of arrangements. Therefore, from the above facts, we obtain that

Tn =
∑

e1+e2+e3=n, e1,e2∈Ne, e3∈N

n!

e1!e2!e3!
.

• Definition. The exponential generating function for the sequence {an}n≥0 is defined to be
a power series ∑

n≥0

an
n!
· xn.

• Similar to the way of defining f(x) (a product of three ordinary generating functions) in
Problem 1, we define

g(x) :=

(∑
i∈Ne

xi

i!

)2
∑

j∈N

xj

j!


to be a product of three exponential generating functions, raised from the possible numbers
of letters a, b, c.

We will prove that the so-defined g(x) is the exponential generating function of the sequence
{Tn}. That is:

• Theorem.

[xn]g =
Tn

n!
.
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